Landfills have been around for centuries. The very first landfill dates back 3,000 BC to Knossos, Crete (modern-day Greece), where people used to dig holes in the ground to dispose of refuse. Currently, the U.S. represents nearly 4% of the world population but is responsible for 12% of the global municipal solid waste (MSW). The current recycling rate in the U.S. is 32%, and more than half of the MSW still ends up in landfills.
This article discusses landfills, their impact, and how data and technologies can help maximize landfill operations and reduce emissions.
Landfill Emissions and Their Impacts
Landfills are designed mainly to dispose of waste that cannot be recycled, reused, repurposed, or composted. The types of waste that typically end up in landfills include municipal solid waste (MSW), construction and demolition debris, and industrial, electronic, medical, and hazardous waste. The waste in landfills undergoes decomposition, producing both liquid and gaseous byproducts.
Landfill emissions can be broadly classified into three categories: greenhouse gases, organic compounds (VOCs), and toxic air pollutants. Greenhouse gases such as methane and carbon dioxide are produced during the decomposition of organic waste in landfills. Methane, in particular, is nearly 28 times more potent than carbon dioxide. On top of that, landfill emissions can also produce leachate (a toxic liquid), contaminating the soil and groundwater.
In the United States, MSW landfills are the third-largest source of human-related methane emissions. These emissions not only contribute to climate change but lead to various other environmental and social issues. In 2020, the methane emissions from MSW landfills were equivalent to the greenhouse gas emissions from about 20.3 million passenger vehicles driven for a year.
However, these harmful methane emissions can be captured and utilized as a significant energy source.
Data as a Tool for Evaluating Landfill Operations
It’s difficult to imagine landfills having a place in the circular economy. But data can play a critical role in making landfills safer and more efficient and in reducing their emissions. Data can help us understand the scope and source of emissions, track emissions reduction, and identify areas of improvement.
Here are a few ways data can improve landfill operations and help reduce emissions.
Emissions inventories: Data can be used to develop landfill emissions inventories, which compile information on the quantities and sources of greenhouse gas emissions from various sectors. The inventories track emission changes over time and provide a baseline for measuring progress toward emissions reduction goals.
Monitoring and reporting: Monitoring and reporting landfill emissions regularly can help identify areas where emissions can be reduced or controlled. Sophisticated monitoring can detect anomalies in daily operations, enable timely repair of methane leaks, support emissions reduction, and validate abatement strategies.
Identifying sources: Detailed data on landfill emissions can be used to identify the most significant sources of emissions, like methane and other GHG’s, volatile organic compounds (VOCs), and toxic air pollutants. This can inform targeted emission reduction strategies and evaluate their effectiveness over time.
Evaluating technologies: Data can help evaluate the performance of various technologies used to reduce landfill emissions, such as methane capture and utilization systems.
Predictive modeling: Data can be used in predictive modeling to identify areas where emissions reductions are more likely to have a significant impact and then develop reduction strategies accordingly.
Public health assessments: Landfill data can assess the potential health impacts of landfill emissions on nearby communities. The information can further underscore strategies (like improving ventilation or implementing a buffer zone) to mitigate the impacts.
Education and outreach: An important use of data is to educate the public about the overall impacts of landfills. This can promote behavior change that leads to waste reduction at both the individual and community levels.
The Role of Data and Technology in Landfill Rehabilitation
Unregulated MSW landfills can cause a significant negative impact on the environment and community health. The decomposition of organic materials in landfills results in landfill emissions, leachates, pollution, odor, and the spread of disease. Landfill rehabilitation and smart landfill management are the answers to these problems and will ensure we only have safe, effective landfills.
Upgrading landfill systems can help transform a toxic space into a valuable community asset. According to a report from RMI, rehabilitating simple dump sites to sanitary landfills equipped with gas and leachate collection systems and other environmental controls will enable the capture of methane emissions and improve public health and safety.
Regulating and upgrading landfills also drives necessary change to the industry, transforming it from one whose priority is profit to a waste management system that is focused on resource recovery. In a recent issue of Municipal Solid Waste Management Magazine, Parker Dale, President of Bio-Organic Catalyst, says,
“The old model was to make money off the dumping fees. And then as you had renewables, the value of the gas was recognized and better management began to seep in and you had the evolution of the industry and more sophistication in management to support the mechanism of action that was really biological. Now it’s about optimizing the carbon cycle to essentially turn the whole thing into useable converted waste, producing useable resources such as compost and methane.”
Innovation to Support Responsible Landfill Operations
The World Bank reports that global waste is expected to grow by 70% by 2050. While source reduction remains the best method for reducing our dependency on landfills and combatting emissions, landfills won‘t be going away soon. As a significant part of waste management, we must use data and technology to ensure landfills’ efficacy and long-term sustainability. From developing emission inventories to monitoring and reporting to landfill rehabilitation, data has the potential to reduce landfill emissions and help us recover as much value from them as possible.